LECTURE 2

WHITNEY'S EXTENSION THM (1934)

RECALL NOTATION $F \in C^{m}(\mathbb{R}^{n}), x \in \mathbb{R}^{n} \Longrightarrow$ Jx(F) = mt degree Taylor poly of Fat x $J_{x}(F)(y) = \sum_{|\alpha| \leq m} \frac{1}{\alpha!} \partial^{\alpha} F(x) \cdot (y - x)^{\alpha'}$ So $J_{x}(F) \in P$

P= VECTOR SPACE OF ALL (REAL-VALUED) POLYS OF DEGREE ≤ M ON Rⁿ

 $\|F\| = \sup_{x \in \mathbb{R}^n} \max_{|\alpha| \le m} |\partial^{\alpha} F(x)|.$

A WHITNEY FIELD IS A FAMILY $\vec{P} = (P^{x})_{x \in E}$ of Polynomials $P^{x} \in P$, INDEXED BY THE POINTS $x \in E$, WHERE E IS A SUBSET OF \mathbb{R}^{n}

WHITNEY'S QUESTION : GIVEN A WHITNEY FIELD $\vec{P} = (P^*)_{x \in E}$ WITH FCR COMPACT. HOW CAN WE DECIDE WHETHER THERE EXISTS FE (R") SUCH THAT J(F) = P FOR ALL XEE ?

COMPARE WITH QUESTION FROM TALK I : GIVEN A FUNCTION f: E-R, HOW CAN WE DECIDE WHETHER THERE EXISTS FEC (R") SUCH THAT F(x) = f(x) FOR ALL XEE.

WHITNEY'S THM (1st VERSION) For a Whitney field $\vec{P} = (P^x)_{x \in E}$, E compact, the following are equivalent : (A) There exists FEC (R") s.t. $J_x(F) = P^x$ for all $x \in E$. (B) For each multi-index & (IXI ≤ m), we have $|\partial^{x}(P^{x}-P^{y})(x)| = o(|x-y|^{m-|x|})$ as Ix-yl->0, x,yEE.

More Precise Version
Let
$$\vec{P} = (P^{x})_{x \in E}$$
 be a Whitney fld.
Let $\vec{P} = (P^{x})_{x \in E}$ be a Whitney fld.
Let M be a non-negative real number.
Suppose:
(A) $1\partial^{x} P^{x}(x) = M$ for all $|\alpha| \le m$, $x \in E$.
(B) $|\partial^{x} (P^{x} - P^{y})(x)| \le M |x-y|^{m-1\alpha|}$
for all $|\alpha| \le m-1$, $x, y \in E$.
(C) $|\partial^{x} (P^{x} - P^{y})(x)| = o(|x-y|^{m-1\alpha|})$
as $|x-y| \to O$ $(x, y \in E)$ for each $|\alpha| \le m$.
Then $\exists F \in C^{m}(\mathbb{R}^{n})$ s.t.
 $J_{x}(F) = P^{x}$ (all $x \in E$)
 $\|F\|_{C^{m}(\mathbb{R}^{n})} \le CM$ Depends

Thus, WE CAN COMPUTE THE LEAST POSSIBLE (inf) C NORM OF A FUNCTION F that agrees with a given Whitney field P = (P*) * E UP TO A CONST FACTOR DEPENDING ONLY ON M, n.

For · C²(Rⁿ)

(WITH A BETTER CHOICE OF THE C² NORM),

LEGRUYER & WELLS

FOUND AN EXACT FORMULA for the least possible norm?

WHITNEY'S PROOF GIVES AN EXPLICIT FORMULA FORT F DEPENDS LINEARLY ON P IF P= (PX)XEF, THEN FOR ANY GIVEN POINT YETR, F(y) IS DETERMINED ENTERELY By P'..., P'K · K < C - DEPENDS ONLY ON M, h · X1, ..., XK DEPEND ON Y BUT NOT ON P

$$\vec{P} = (P^{x})_{x \in E}, F = T \vec{P} \in C^{m}(\mathbb{R}^{n})$$

$$\Rightarrow$$

$$F(y) = \sum_{k=1}^{K} \lambda_{k}(P^{x_{k}})$$

$$\boxed{\lambda_{k} : P \rightarrow \mathbb{R} \text{ Are LINEAR FUNCTIONALS}}$$

$$x_{i}, \dots, x_{k} \in E$$

$$K = C$$

$$\boxed{T h_{k} \ \lambda_{k} \text{ and } x_{k} \ D \in P \in ND \text{ on } y},$$

$$\overrightarrow{R}_{i} = NOT \text{ on } \vec{P}.$$

PHAS "BOUNDED DEPTH"

SKETCH OF

WHITNEY'S PROOF

MAIN STEPS

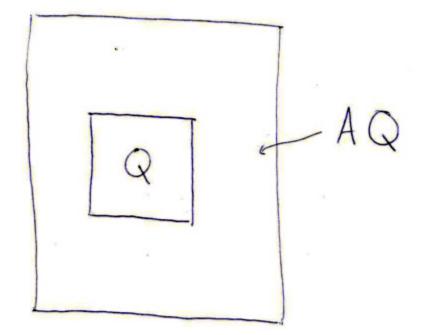
- · WHITNEY CUBES
- · WHITNEY PARTITION OF UNITY
- · THE EXTENSION F
 - · CHECK THAT IT WORKS

PREPARE TO DEFINE WHITNEY CUBES

QS

×

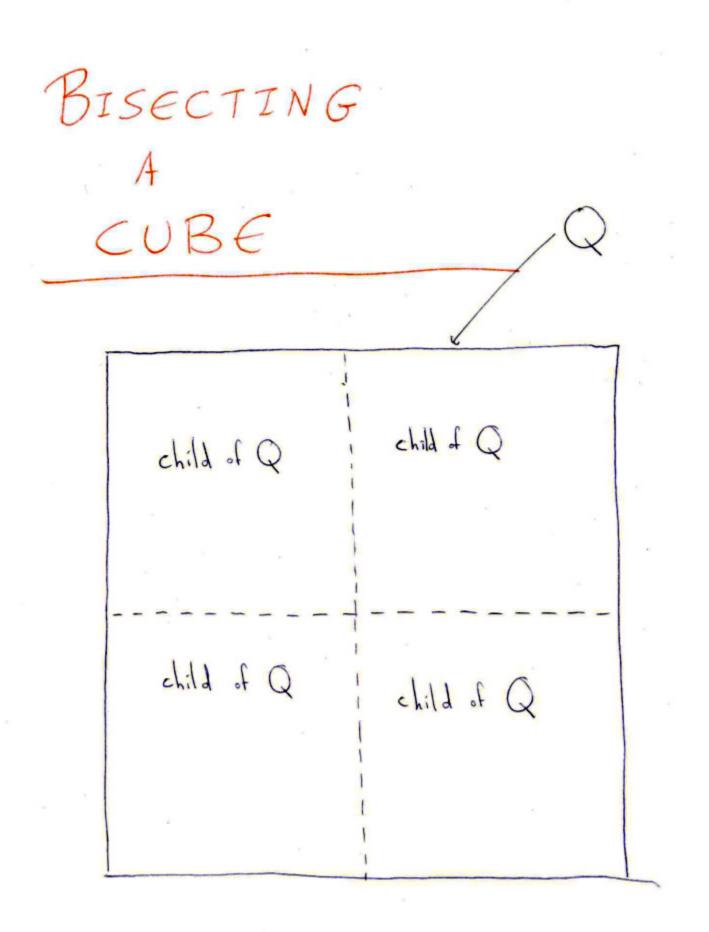
×



SAG SQ

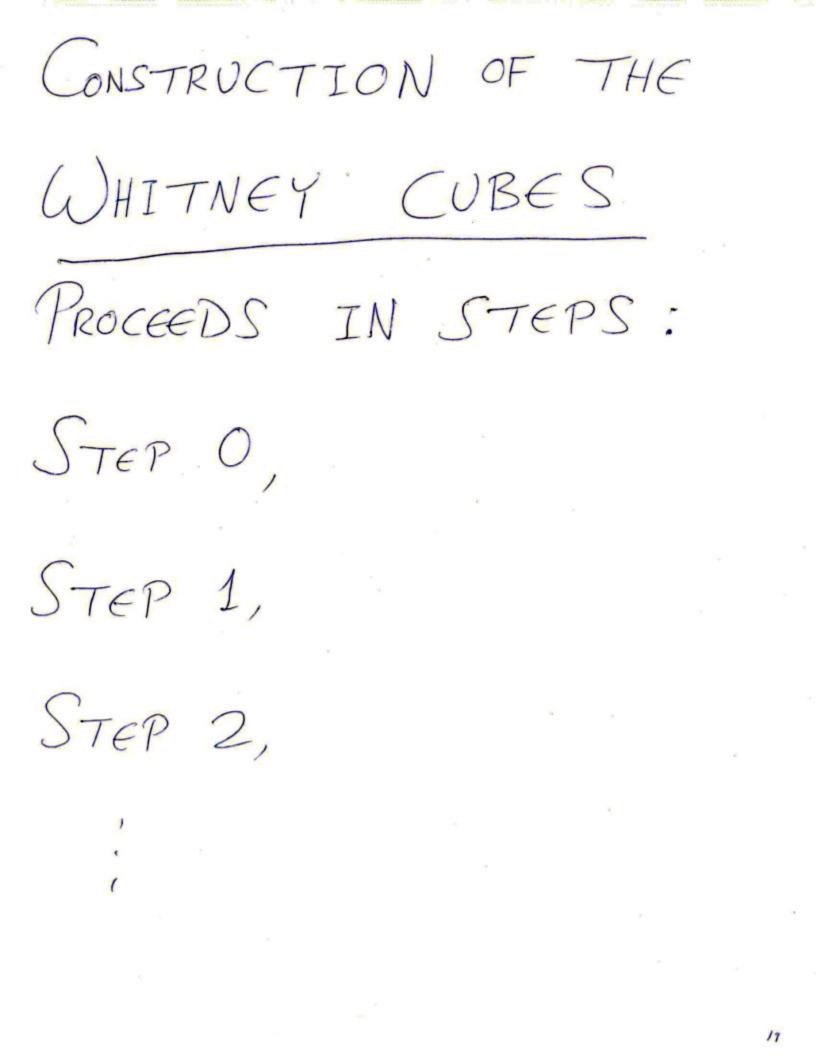
· AQ & Q

HAVE SAME CENTER



CONSTRUCTING WHITNEY CUBES Given E < R" Start with a big cube Q. Containing E in its middle half

 $(SAY S_{Q^{\circ}} = 1024)$



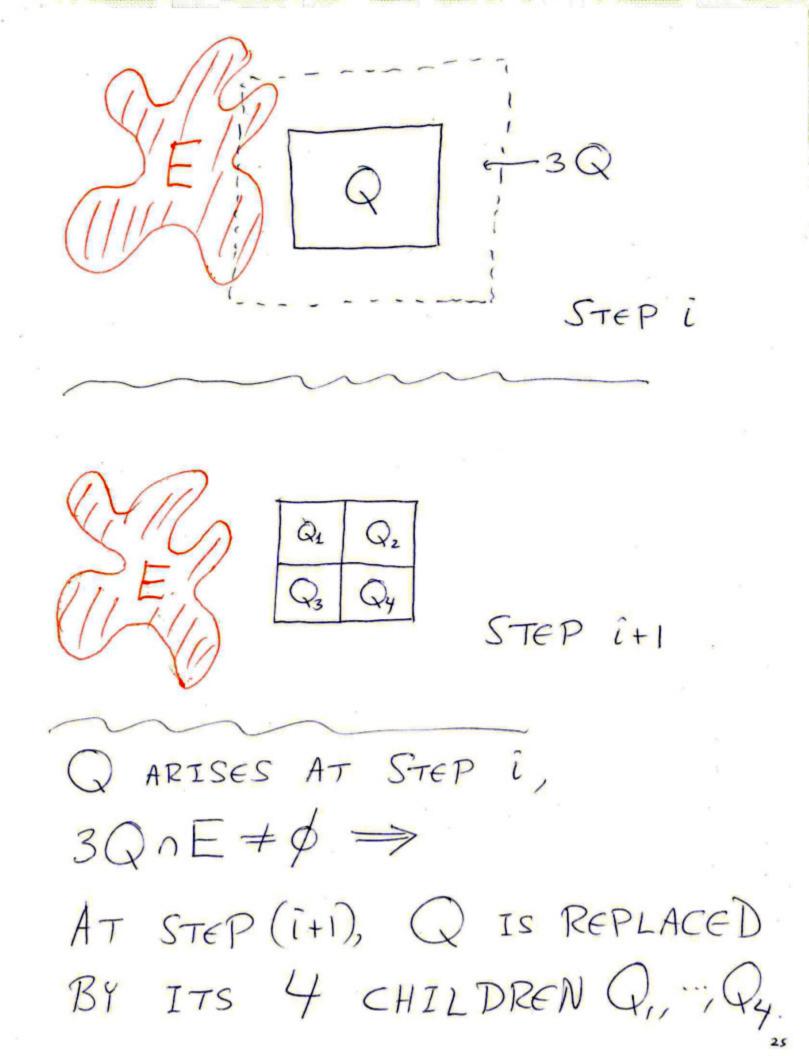
AT EACH STEP i WE PRODUCE A PARTITION OF QUINTO FINITELY MANY CUBES. THE PARTITION AT STEP O CONSISTS OF THE SINGLE CUBE Q.

THE PARTITION IN STEP (1+1) REFINES THE PARTITION IN STEP I TO PRODUCE THE PARTITION OF STEP (i+1), WE BISECT SOME OF THE CUBES FROM THE PARTITION IN STEP i

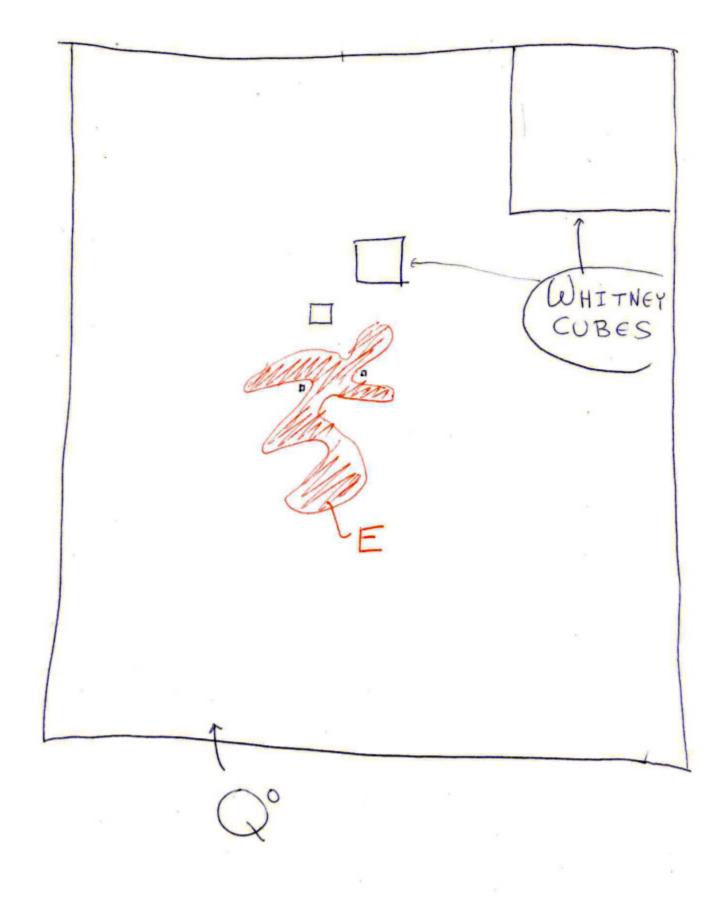
RULE : LET Q BE A CUBE OF THE STEP i PARTITION. • IF 3Q $n E = \phi$, THEN WE INCLUDE O IN THE STEP (I+1) PARTITION, AND WE CALL Q A WHITNEY CUBE

• IF $3QnE \neq \phi$ THEN WE BISECT Q INTO ITS CHILDREN Q1, Q2, ..., Q2n, AND INCLUDE THOSE CHILDREN (BUT NOT Q) IN THE STEP (I+1) PARTITION.

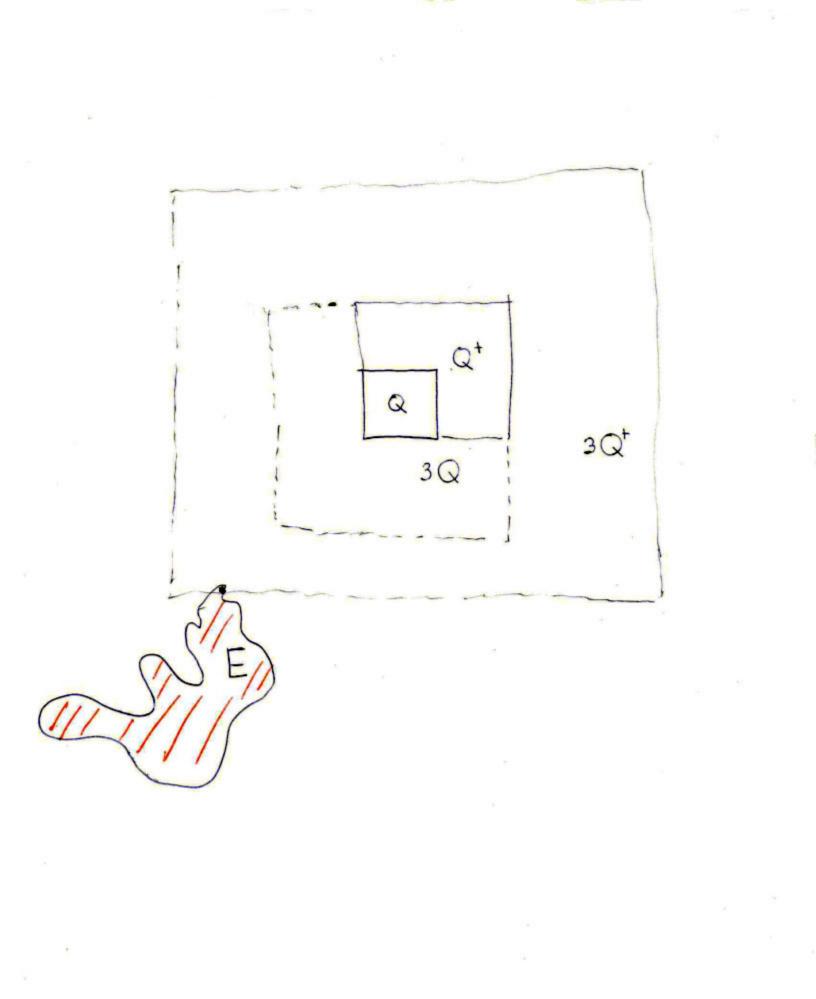
) ARISES AT STEP i $3QnE = \phi$ Q SURVIVES, AND APPEARS AT STEP 1+1 THIS Q IS A WHITNEY CUBE



BASIC PROPERTIES OF WHITNEY CUBES · THE WHITNEY CUBES FORM A PARTITION OF R" E THE DIAMETER OF ANY WHITNEY CUBE IS COMPARABLE TO ITS DISTANCE FROM E.



PROOF : Let Q = Whitney cube. Q arose as a child of a cube Qt. We decided to retain Q, but we decided not to retain Qt. $S_0 = 3QnE = \phi$ $3Q^{\dagger} \cap E \neq \phi$ but

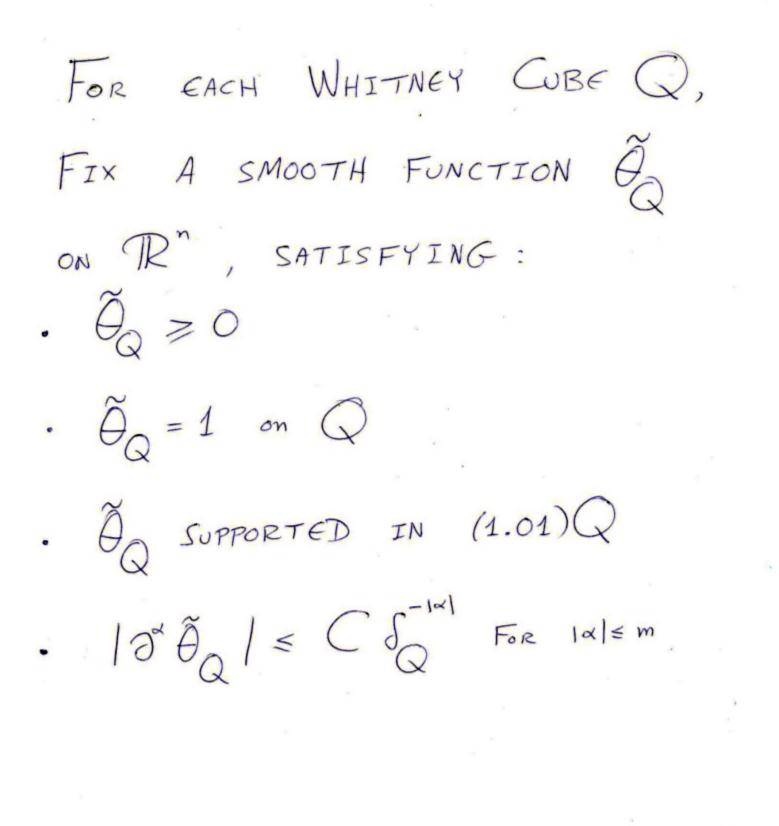


· IF TWO WHITNEY CUBES Q4Q' TOUCH, THEN SQ & SQ' ARE COMPARABLE,

 $\frac{1}{2}S_Q \leq S_Q \leq 2S_Q$

• ANY GIVEN WHITNEY CUBE Q TOUCHES AT MOST A BOUNDED NUMBER OF OTHER WHITNEY CUBES Q! WE HAVE DEFINED THE WHITNEY CUBES:

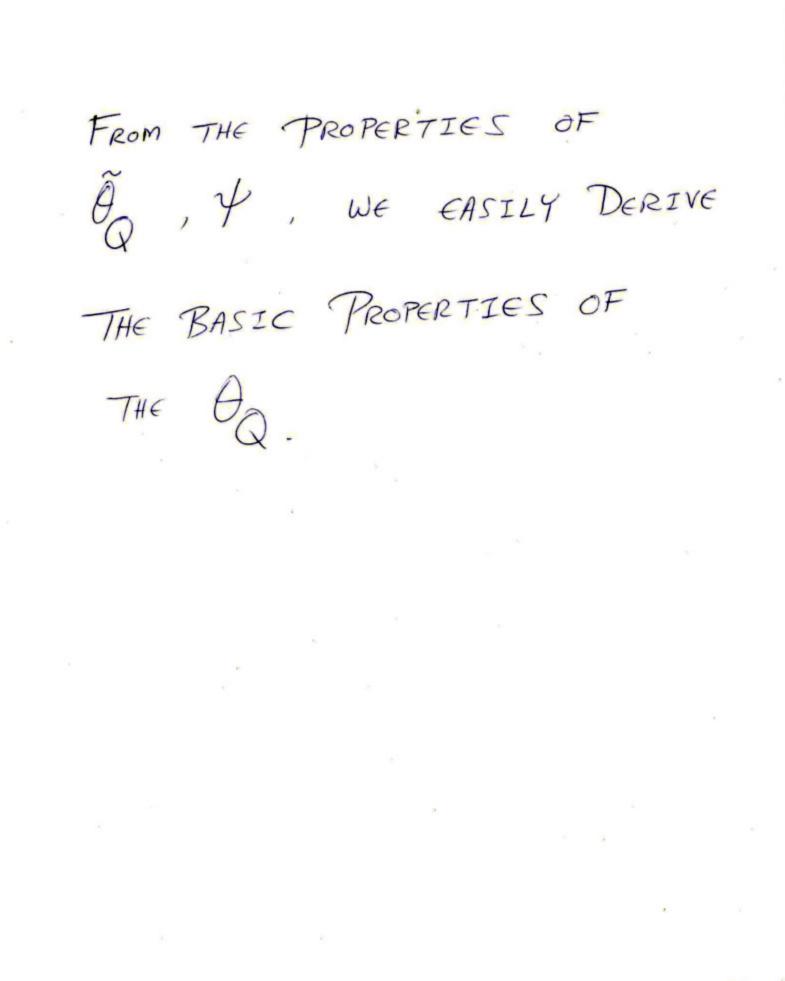
NEXT, WE DEFINE THE WHITNEY PARTITION OF UNITY



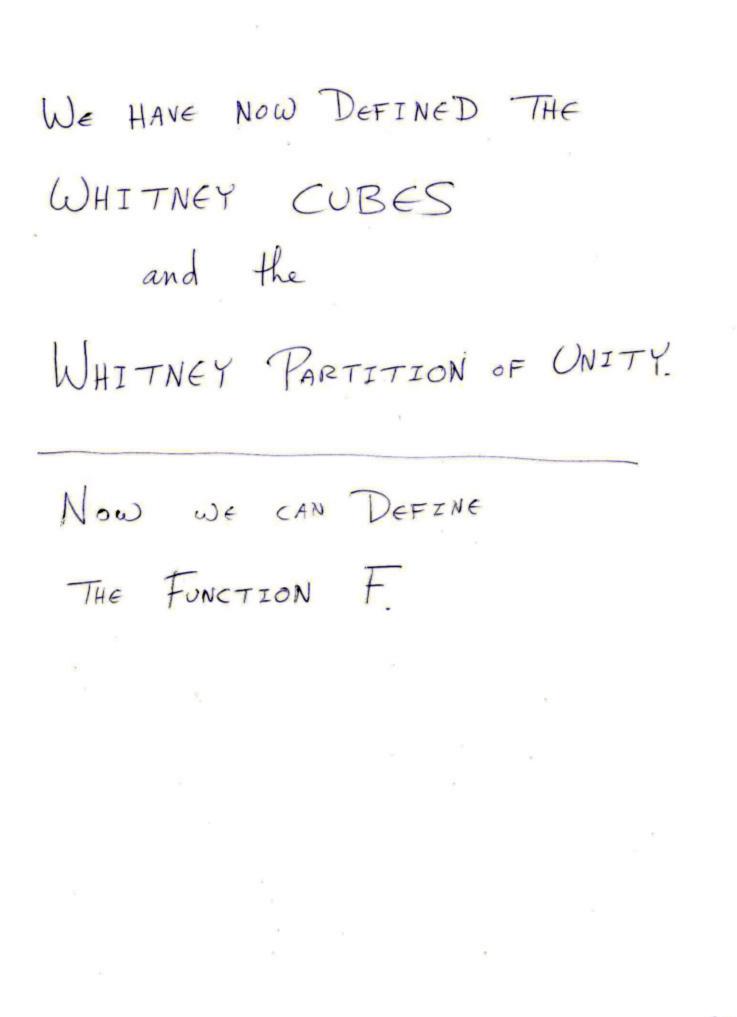
Let $\Psi = \sum_{Q'} \tilde{\theta}_{Q'}$, where Q' VARIES OVER ALL THE WHITNEY CUBES. If $x \in Supp(\tilde{\Theta}_Q)$, then $\tilde{Q}_{\gamma} \sim dist(x, E)$ In particular, $x \in supp(\tilde{\theta}_Q)$ for at most C distinct Whitney cubes Q' Therefore, I has the following properties.

 $Y = \sum_{Q'} \tilde{\theta}_{Q'}$ • $\psi \ge 1$ on R-E $\cdot \Psi = 0 \quad \text{on } E$ $|\partial^{\alpha} \psi_{(\alpha)}| \in C[dist(x, E)]$ For Idlem, XER-E $|\partial^{x} \psi(x)| \leq C \int_{Q}^{|x|} on supp (\tilde{\theta}_{Q}).$ $\psi(x) \ge 1$ on Q.

NOW, FOR EACH WHITNEY CUBE Q, WE SET e se, $\Theta_Q = \frac{\widetilde{\Theta}_Q}{V} = \frac{\widetilde{\Theta}_Q}{\widetilde{\Sigma}_Q}$ THUS, ZQ= 1 for xEQE THIS IS THE WHITNEY PARTITION OF UNITY



BASIC PROPERTIES OF OG $\sum_{Q} \theta_Q(x) = \begin{cases} 1 & For x \in Q^\circ E \\ 0 & For x \in E \end{cases}$ FOR EACH WHITNEY CUBE Q, $supp(\theta_Q) \subset (1.01)Q$ and · | 2° Q(x) | ≤ C S FOR ALL XEQ, 1x | ≤ m.



For EACH WHITNEY CUBE Q,
WE PICK A POINT X(Q) EE
AS CLOSE AS POSSIBLE TO E.
RECALL, WE ARE GIVEN A
WHITNEY FIELD

$$\vec{P} = (P^{*})_{x \in E}$$

WE WANT A FUNCTION FEC^m(Rⁿ)
S.t.
 $J_{x}(F) = P^{*}$ FOR EACH XE E.
WILL DEFINE FON Q^O

DEFINE $F(x) = \begin{cases} \sum_{Q} \theta_{Q}(x) & P^{x(Q)}(x) & For x \in Q^{\circ} \in E \\ Q & Q^{(x)} & For x \in E \end{cases}$ NOTE: F DEPENDS LINEARLY ON $\vec{P} = (P^{x})_{x \in E}$ in a very simple way. The map $\vec{P} \mapsto F$ is a linear map of bounded depth.

Now we Have DEFINED THE FUNCTION F

MUST SHOW $\begin{cases} H_{YPOTHESES} \\ OF \\ WHITNEY'S THM \end{cases} \longrightarrow \begin{cases} F \in C^{m}(Q^{\circ}) \\ J_{x}(F) = P^{*} (x \in E) \\ \|F\|_{C^{m}(Q^{\circ})} \leq CM \end{cases}$

.

RECALL HYPOTHESES :

$$\left| \partial^{\alpha} P_{(x)}^{x} \right| \leq M$$
 (all $x \in E$, $|\alpha| \leq m$)

•
$$| \partial^{x} (P^{x} - P^{y})(x) | \leq M |x - y|^{m - |x|}$$

(x, y $\in E$, $|x| \leq m - 1$)

•
$$\left| \partial^{\alpha} (P^{x} - P^{y})(x) \right| = o(|x - y|^{m - |\alpha|})$$

KEY IDEA Let x e Q°E. Say XEQ (WHITNEY CUBE) Then in a nbd. of x, write $F = \sum \theta_Q P^{x(Q)}$ $= P^{\times(\hat{Q})} + \sum_{Q} \theta_{Q} \left[P^{\times(Q)} P^{\times(\hat{Q})} \right]$ Q

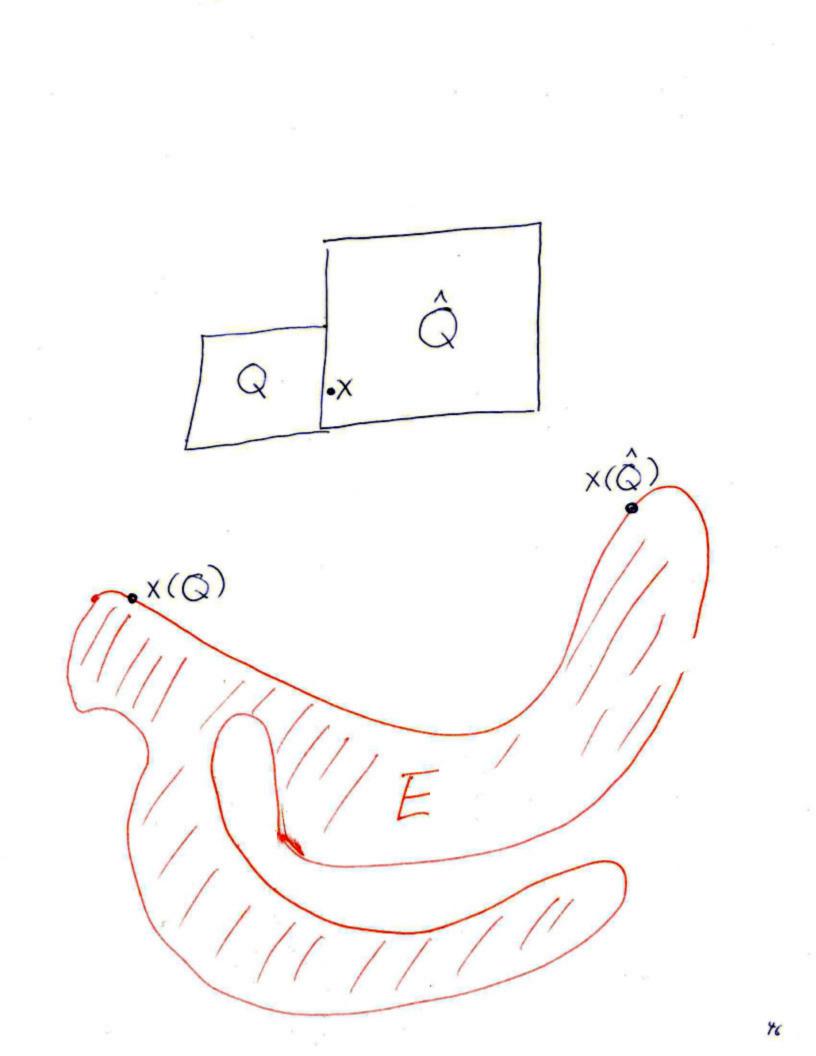
SHOW THAT $\|F\|_{C^{\infty}(Q^{\circ})} \leq CM$ WILL BE ENOUGH IT SHOW THAT 10 $\left| \partial^{x} \left\{ \Theta \cdot \left[P^{x(Q)} - P^{x(\hat{Q})} \right] \right\}(x) \right| \leq CM$ SUPP OD > X. FOR

CRUCIAL POINT :

 $|x(Q) - x(\hat{Q})| \leq C \hat{Q}$

AND $\frac{1}{2}\int_{\hat{Q}} \leq \int_{\hat{Q}} \leq 2\int_{\hat{Q}}$

WHEN SUPPOQ > X



ESTIMATE 0 $\partial^{\alpha} \left\{ \Theta \cdot \left[P^{\times(Q)} - P^{\times(Q)} \right] \right\} (x)$ THE ESTIMATES USE WE $|\partial^{\beta} \Theta_{\alpha}| \leq C S_{\alpha}^{-1\beta} \leq C S_{\alpha}^{-1\beta}$ for [B] = m AND $\left| \partial^{\beta} \left[P^{\times(Q)} - P^{\times(\hat{Q})} \right] (x) \right| \leq$ MS for IBISM.

47

 $\partial^{x} \{ \Theta_{Q} \cdot [P^{x(Q)} - P^{x(\hat{Q})}] \} (x)$ IS A SUM (OVER B+X=~) TERMS OF $\left[\partial^{\beta}\theta_{Q}(x)\right] \cdot \left[\partial^{\chi}(P^{\chi(Q)} - P^{\chi(\hat{Q})})(x)\right]$ DOMINATED)OMINATED BY M S2m-181 BY -1B1 $m - |\alpha|$ PRODUCT SMS

RECALL,

OC O SIDELENGTH 1024

 $s_{\circ} = 1024.$

So, FOR INISM, WE HAVE SHOWN THAT $\left|\partial^{x}\left\{\partial_{0}\cdot\left[P^{x(Q)}-P^{x(\hat{Q})}\right]\right\}(x)\right|\leq CM$

THEREFORE, $\|F\|_{C^{m}(Q^{\circ})} \leq CM.$

Those are the Main Ideas

in the Proof of the

Whitney Extension Theorem

WHITNEY'S THEOREM TELLS US WHEN THERE EXISTS FECT THAT AGREES WITH A GIVEN WHITNEY FIELD ON E. WE REALLY WANT TO KNOW WHETHER THERE EXISTS FECM THAT AGREES WITH A GIVEN FUNCTION on E

Although WHITNEY'S THM ANSWERS AN EASIER VARIANT OF THE "REAL" PROBLEM, BOTH THE THEOREM AND ITS PROOF GNTAIN IMPORTANT LESSONS FOR US (& for ANALYSIS).

Lessons from the Proof

of Whitney's Theorem

ESSON 1

WE WILL BE INTERESTED IN PRODUCTS OF THE FORM

[FACTOR 1] · [FACTOR 2]

WHERE $|\partial^{\beta}(FACTOR 1)(x)| \leq S^{-1\beta}$ and $\left| \partial^{\beta} (F_{ACTOR 2})(x) \right| \leq S^{m-1\beta}$ for IBI SM.

Whitney's Theorem

for

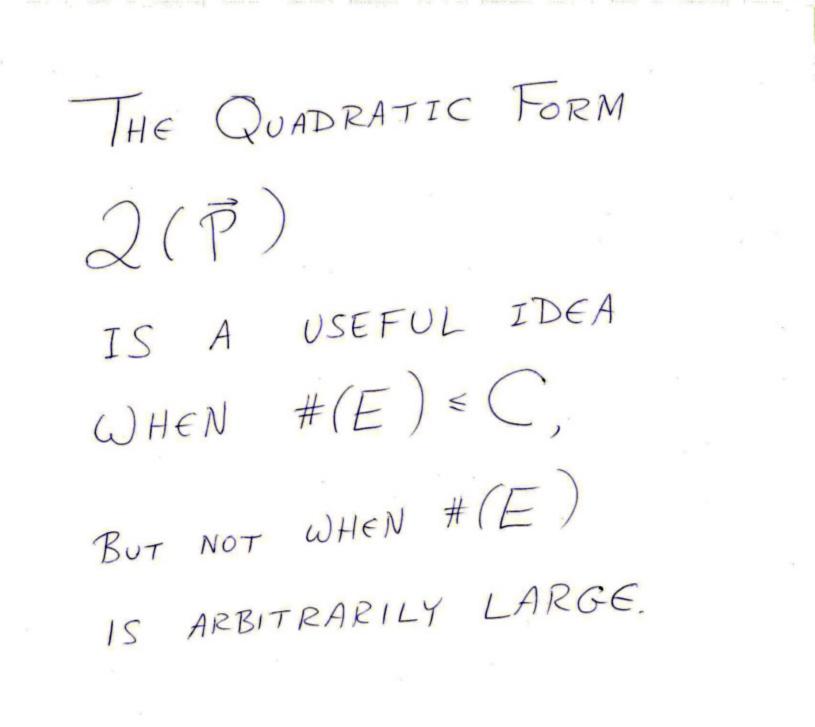
Finite Sets.

GIVEN
$$M \ge 0$$
, $\overline{P} = (P^{\times})_{\times \in E}$,
 $E = FINITE$. Assume:
 $\left| \partial^{\propto} P^{\times}(\times) \right| \le M$ for All $\times \in E$, $|\alpha| \le m$.
 $\left| \partial^{\propto} (P^{\times} - P^{\vee})(\infty) \right| \le M |x - y|^{m - |\alpha|}$ all $\times, y \in E$,
 $\left| \partial^{\propto} (P^{\times} - P^{\vee})(\infty) \right| \le M |x - y|^{m - |\alpha|}$ all $\times, y \in E$,
 $\left| \partial^{\propto} (P^{\times} - P^{\vee})(\infty) \right| \le M |x - y|^{m - |\alpha|}$ all $\times, y \in E$,
 $\left| \partial^{\propto} (P^{\times} - P^{\vee})(\infty) \right| \le M |x - y|^{m - |\alpha|}$ all $\times, y \in E$,
 $\left| \partial^{\propto} (P^{\times} - P^{\vee})(\infty) \right| \le M |x - y|^{m - |\alpha|}$ all $\times, y \in E$.
Then There exists TS
 $F \in C^{m}(\mathbb{R}^{n}) \qquad \text{With Norm}$
 $\left\| F \right\|_{C^{m}(\mathbb{R}^{n})} \le CM$, such that
 $J_{\times}(F) = P^{\times}$ for All $\times \in E$.

.

NOTE : TO DECIDE WHETHER

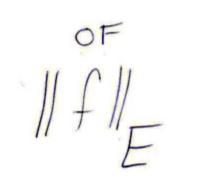
$$\begin{aligned} \left| \partial^{\alpha} P_{(x)}^{x} \right| &\leq M \\ and \\ \left| \partial^{\alpha} (P^{x} - P^{y})_{(x)} \right| &\leq M |x - y|^{m - |\alpha|} \\ \omega_{\varepsilon} \quad MAy \quad \varepsilon_{xAMTN\varepsilon} \\ TH\varepsilon \quad QUADRATIC \quad FORM \\ 2(\vec{P}) &= \sum_{x \in E} \sum_{|\alpha| \leq m} \left(\partial^{\alpha} P_{(x)}^{x} \right)^{2} + \\ \sum_{x, y \in E} \sum_{|\alpha| \leq m - 1} \left(\frac{\partial^{\alpha} (P^{x} - P^{y})_{(x)}}{|x - y|^{m - 1|\alpha|}} \right)^{2} \\ (x \neq y) \end{aligned}$$



APPLICATION ECR" FINITE $L_{\epsilon \tau} f: E \to \mathbb{R},$ DEFINE INF OF $\|F\|_{C^{m}(\mathbb{R}^{n})}$ OVER ALL $F \in C^{m}(\mathbb{R}^{n})$ 1 f 1 -1 SUCH THAT F=f on E.

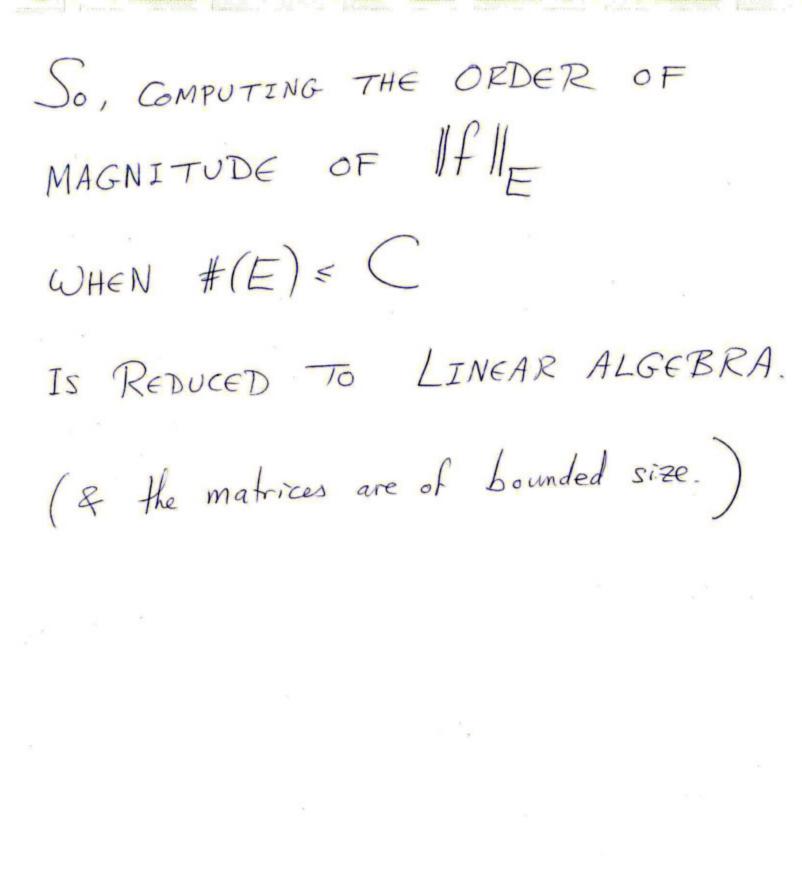
PROBLEM :

COMPUTE THE ORDER OF MAGNITUDE



SOLUTION IN CASE #(E) < (If I IS COMPARABLE TO THE MIN OF THE QUADRATIC FORM 2(P) OVER ALL $\vec{P} = (P^{x})_{x \in E}$ SUCH THAT $P^{x}_{(x)} = f(x) (A \sqcup x \in E)$

That's immediate from Whitney's Thin for finite sets.



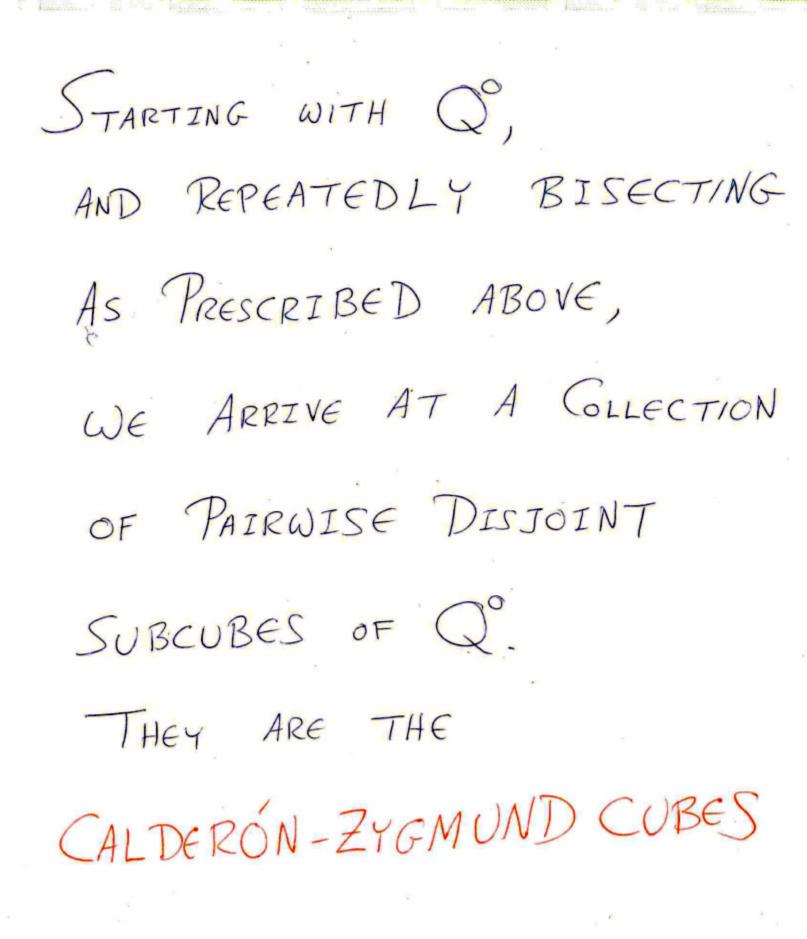
к. С

The Calderón - Zygmund

Decomposition

START WITH A UNIT CUBE O'cR" IF WE LIKE IT, THEN KEEP IT; IF WE DON'T LIKE IT, THEN BISECT IT INTO SUBCUBES Q1, ..., Q2", & EXAMINE EACH OF THOSE IN TURN.

TO EXAMINE A CUBE Q, WE ASK: Do we LIKE Q? · If SO, THEN WE KEEP Q. . If not, THEN WE BISECT Q INTO 2" SUBCUBES, AND EXAMINE EACH OF THOSE SUBCUBES.



HOW DO WE DECIDE WHETHER WE LIKE A CUBE Q? WHITNEY : We like Q if $3Q \cap E = \phi$ (1934) CALDERÓN & ZYGMUND (1950's ; see also MARCINKIEWICZ, 1930's) We like Q ;f 1 vol(Q) Q f(x) dx >) for given fr. f & number 7.

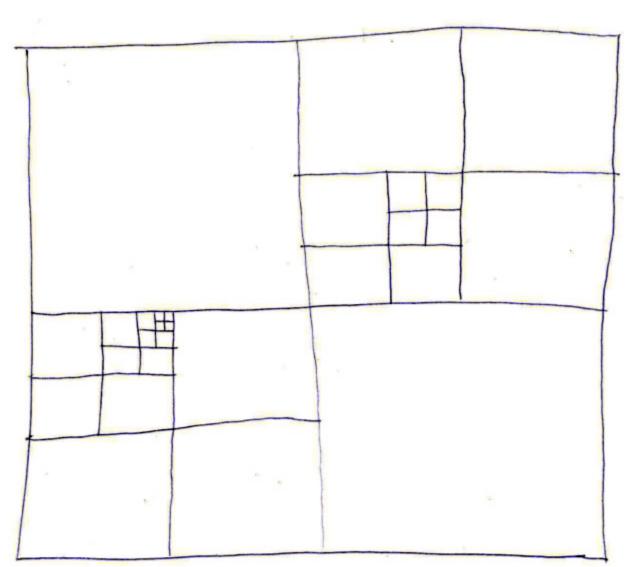
can give any rule we please. We For each Calderon - Eggmund cube , Q, we know that WE LIKE Q,) ARISES AS A CHILD. OF ANOTHER CUBE Qt, AND WE DON'T LIKE Qt.

THE CALDERÓN-ZYGMUND CUBES ARE PAIRWISE

DISJOINT.

IF WE LIKE EVERY SUFFICIENTLY SMALL CUBE, THEN THE

CALDERÓN-ZYGMUND CUBES PARTITION



×.

THE CALDERÓN - ZYGMUND DECOMPOSITION IS A VERY IMPORTANT IDEA, WITH MANY APPLICATIONS WE WILL USE A PARTICULAR

C-Z DECOMPOSITION TO

PROVE OUR MAIN RESULTS.

OF THE

WHITNEY CUBES

WELL-SEPARATED PAIRS DECOMPOSITION

MOTIVATION: Let $f: E \to \mathbb{R}$, $E \in \mathbb{R}^{n}, \#(E) = N.$ Want to compute the Lipschitz constant $\|f\|_{Lip} := \max_{\substack{x,y \in E \\ x \neq y}} \frac{|f(x) - f(y)|}{|x - y|}$

How many computer ops does it take? Obvious method => ~ N² ops. We can do much better!

to within We can compute II fill Lip a 1% error using only O(NlogN) Computer ops.

Here's the idea...

SUPPOSE E', E'' C E ARE WELL- SEPARATED $D_{\text{ISTANCE}}(E', E'') \ge 10^3 \left[D_{\text{IAM}}(E') + D_{\text{IAM}}(E'') \right]$ **F**"

73 🕷

E', E', TOR SUCH WELL-SEPARATED LET'S COMPUTE MAX $\left\{ \begin{array}{c} |f(x') - f(x'')| \\ |x' - x''| \end{array} : (x', x'') \in E' \times E'' \end{array} \right\}$ NAIVE METHOD => USE (#E') × (#E") COMPUTER OPS. WE CAN DO MUCH BETTER, THANKS TO TWO SIMPLE REMARKS.

FIRST REMARK:

|X'-X" IS ESSENTIALLY CONSTANT (x', x") VARIES OVER E'x E" As THEREFORE, IT'S ENOUGH TO COMPUTE $MA \times \{ | f(x') - f(x'') | : (x', x'') \in E' \times E'' \}$

SECOND REMARK: $MAX \left\{ |f(x') - f(x'')| : (x', x'') \in E' \times E'' \right\}$ IS EQUAL TO THE LARGER OF THE TWO NUMBERS $\left[\begin{array}{c} MAX \quad f(x') \\ x'e E' \end{array} \right] - \left[\begin{array}{c} MIN \quad f(x'') \\ x''e E'' \end{array} \right]$ AND $\begin{bmatrix} MAX & f(x'') \end{bmatrix} - \begin{bmatrix} M/N & f(x') \\ x' \in F' & \end{bmatrix}$

THEREFORE, WHEN E'& E'ARE WELL-SEPARATED, WE CAN GMPUTE $MAX \left\{ \frac{|f(x') - f(x'')|}{|x' - x''|} = (x', x'') \in E' \times E'' \right\}$

To WITHIN 1%, USING $\sim (\#E') + (\#E'')$ COMPUTER OPS,

A BIG IMPROVEMENT OVER (#E') × (#E')

This motivates the WELL- SEPARATED PAIRS DECOMPOSITION ("WSPD") of CALLAHAN & KOSARAJU.

(WSPD): $L_{F} \in \mathbb{R}^{n}, \ \#(E) = N.$ Then we can partition ExE Diagonal into Cartesim products $E_{\nu} \times E_{\nu}$, $\nu = 1, \dots, \nu$ max

such that (a) DISTANCE $(E'_{\nu}, E''_{\nu}) \ge 10^3 \left[\text{DIAM}(E'_{\nu}) + \text{DIAM}(E''_{\nu}) \right]$ for each v

and

 $(b) \mathcal{V}_{\max} \leq CN,$

(depends only on the dimension n. Where

Moreover, an EFFICIENT ALGORITHM computer the Exx En In particular, are can produce "REPRESENTATIVES" $(x'_{\nu}, x''_{\nu}) \in E'_{\nu} \times E''_{\nu}$ for all ν using at most CNlogN computer ops. DEPENDS ONLY ON THE DIMENSION

WE WILL SEE IN A LATER LECTURE HOW THE WSPD LETS US COMPUTE ||f||_ TO WITHIN 1%.

THE WSPD WILL BE USED TO PROVE SEVERAL OF OUR RESULTS ON CM AND LM, PINTERPOLATION.

WE WON'T EXPLAIN THE ALGORITHM OF CALLAHAN - KOSARAJU TO GMPUTE THE WSPD. INSTEAD, WE SHOW HOW TO OBTAIN A WSPD USING WHITNEY CUBES.

HERE GOES :

CONSTRUCTING

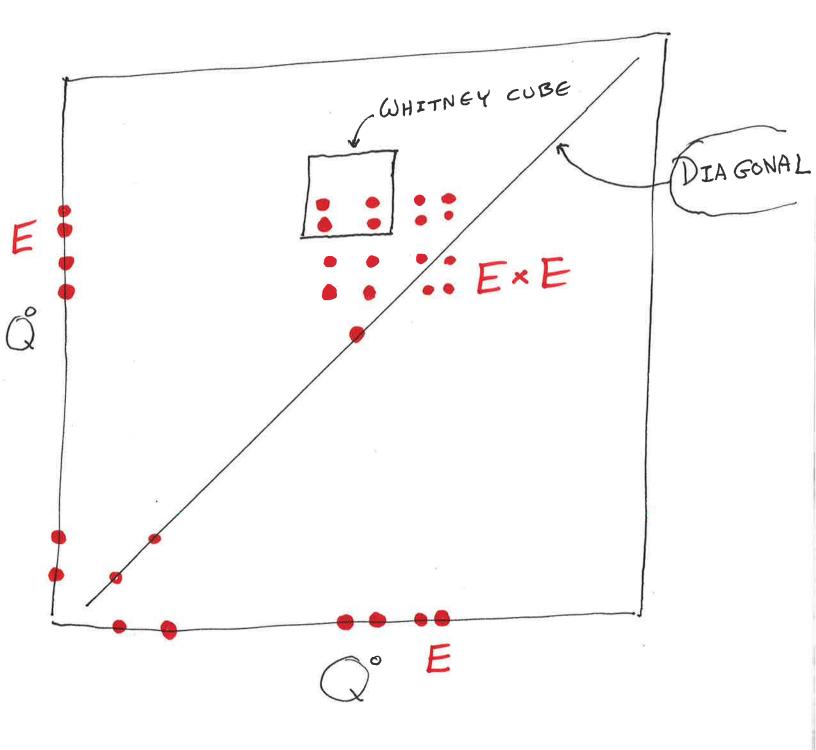
A WSPD

For EXEDIAGONAL

LET Q° > E BE A LARGE CUBE. WE PERFORM A DECOMPOSITION O'x Q° - DIAGONAL oF WHITNEY CUBES. INTO WE START WITH THE CUBE Q'XQO AND WE STOP BISECTING Q'XQ" WHENEVER DISTANCE $(Q', Q'') \ge 10^3 \cdot \left[\text{DIAM}(Q') + \text{DIAM}(Q'') \right]$

Let $Q'_{\nu} \times Q''_{\nu}$ ($\nu = 1, \dots, \nu_{MAX}$) BE THE WHITNEY CUBES THAT INTERSECT EXE.

OUR CARTESIAN PRODUCTS E' E' ARE SIMPLY THE SETS $(E \times E) \cap (Q' \times Q'')$



CLEARLY,

EXENDIAGONAL IS PARTITIONED INTO THE $E'_{\nu} \times E''_{\nu}$ ($\nu = 1, \dots, \nu_{MAX}$)

AND

DISTANCE $(E'_{\nu}, E''_{\nu}) \ge 10^3 \left[\text{DIAM}(E'_{\nu}) + \text{DIAM}(E''_{\nu}) \right]$ FOR EACH 2.

ONE CAN SHOW THAT (THE NUMBER OF PRODUCTS EXE) V_{MA×} CN, where IS AT MOST N = #(E)and C depends only on the dimension n.

ź.

So we HAVE FOUND A

ž

WELL-SEPARATED PAIRS DECOMPOSITION.

I HOPE THIS CONVEYS SOME HINT OF THE POWER OF THE WHITNEY / CALDERÓN - ZYGMUND DECOMPOSITION. WE'LL SEE MORE IN THE LATER TALKS.

Thank you!